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This paper considers a simple Boolean network withN nodes, each node’s state at timet being determined
by a certain numberk of parent nodes, which is fixed for all nodes. The nodes, with randomly assigned
neighborhoods, are updated based on various asynchronous schemes. We make use of a Boolean rule that is a
generalization of rule 126 of elementary cellular automata. We provide formulas for the probability of finding
a node in state 1 at a timet for the class of asynchronous random Boolean networkssARBNd in which only one
node is updated at every time step, and for the class of generalized ARBNssGARBNd in which a random
number of nodes can be updated at each time point. We use simulation methods to generate consecutive states
of the network for both the real system and the models under the various schemes. The results match well. We
study the dynamics of the models through sensitivity of the orbits to initial values, bifurcation diagrams, and
fixed point analysis. We show, both theoretically and by example, that the ARBNs generate an ordered
behavior regardless of the updating scheme used, whereas the GARBNs have behaviors that range from order
to chaos depending on the type of random variable used to determine the number of nodes to be updated and
the parameter combinations.
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I. INTRODUCTION

Due to their convenient and easy to understand structure,
Boolean networks have been used extensively as models for
complex networks such as genetic or biochemical networks,
networks in artificial life, biophysics, condensed matter and
solid-state physics, or statistical mechanics. Originally intro-
duced by Kauffmanf1–3g, the Boolean network models ap-
peal to any situation in which the activity of the nodes of the
network can be quantized to only two states, ON and OFF,
and each node updates its state based on logical relationships
with other nodes of the network. For example, most biologi-
cal phenomena are often described in binary language such
as “responsive and nonresponsive,” “upregulated and down-
regulated,” despite their manifestation in the continuous do-
main f4g. Although a Boolean network model may represent
a very simplified view of a network, it retains in most cases
meaningful information that can be used to study the dynam-
ics of the network and make inferences regarding the real
system they model.

Boolean and random Boolean networks have been exten-
sively considered and studied as models of genetic regula-
tory networksf4–14g with the goal of understanding the glo-
bal network dynamics. Knowing the long-run behavior of
such networks would allow one to identify steady-state be-
havior associated with tumors, and develop a methodology
for altering this steady-state as means of therapy. Applica-
tions of synchronous Boolean networks to biochemical sys-
tems have been studied inf15,16g.

Cellular automatasCAd are a special case of Boolean net-
works, with various systems whose structure lies between the
two. CA are dynamical systems which are discrete in space
and time, operate on a uniform, regular lattice, and are char-

acterized by “local” interactions. They provide models in
computational and physical systems, in biological systems,
such as pattern formation, and in ecology, for example mod-
eling forest firesf17,18g. There has been a great interest in
studying the dynamics of these systems in light of Wolfram’s
analysis of randomness in modeling nature, which catego-
rizes the rules of elementary cellular automatasECAd f19g.
In this paper we analyze a random Boolean network whose
dynamics are established by a generalization of ECA rule
126.

It is known that related to condensed matter and solid-
state physics, the dynamics of “spin-glasses” have been in-
fluential in the formulation of Kauffman’sN/K models used
in his random Boolean networks and other complex, adaptive
systemsf3g. Such models yield insight into the dynamics of
interactive systems through the changing of connectivity
rules and the exploration of the ensuing emergent phenom-
ena. So it is important to model the behavior of intercon-
nected systems in terms of coupling between components
and understanding the means for moving the system into and
out of equilibrium states.

Understanding the dynamics of large interacting systems
is one of the challenges of statistical mechanics. In such
systems the nodessunitsd have diverse functions and they are
connected in random fashion to other nodesf20g. It is impor-
tant to understand under what circumstances the systems
self-organize, and how the dynamics is influenced by the
way the elements are connected and interact. The study of
scale-free networks by Barabasi and Albertf20–22g has cre-
ated the framework for the study of systems in which the
distribution of the node links obeys a power-law rule. These
kinds of systems have been found in many real-world com-
plex networks, such as the Internet, cellular metabolic net-
works, and research collaboration networksf23g. Although in
this paper we assume that all nodes have a fixed number of
parents, future work will include the study of similar systems*Email address: dmatache@mail.unomaha.edu
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in which the number of parents varies according to specified
rules, such as power-law distributions.

One important aspect of all the studies mentioned above
is that the networks are assumed to be synchronous, that is
the nodes update their states at the same time. However,
various authors have observed that for many biological phe-
nomena or cellular automata, including examples discussed
above, asynchronous versions are more plausible models.
For example, individual ants display aperiodic patterns of
active and resting periods, while the colony as a whole may
exhibit synchronized activity; asynchronous activity of the
neurons in the brain could lead to some global patternsf24g.
Studies of asynchronous random Boolean networkssARBNd
include properties of attractors of the ARBNsf25g, role of
the updating scheme of the nodes in the dynamics of the
system and the emergence of modularityf24,26g, rhythmic
and nonrhythmic attractors in ARBNsf27,28g, critical values
in ARBNs f29g, and role of asynchrony in generating edge of
chaos patterns in cellular automataf30g. In this paper we
extend previous work on synchronous random Boolean net-
works governed by a generalization of ECA rule 126f31,32g
to the case of asynchronous updating.

Following Wolfram f19g it makes sense to think about
three types of randomness in modeling nature. There may be
randomness in the environment. Such phenomena are studied
mathematically by, for example, Markov processes, probabi-
listic cellular automataf33g or probabilistic Boolean net-
works f4g. The second Wolfram category is randomness in
initial conditions. A prominent example here are random
Boolean networks as discussed by Kauffmanf3g. Wolfram
puts the phenomenon of deterministic chaos into this second
group. The third group is comprised of intrinsic generators of
randomness such as the elementary cellular automata rule 30
and rule 110.

In this paper we discuss a random Boolean network
model which generalizes ECA rule 126 and therefore falls
into Wolfram second type of generation of randomness. Rule
126 is most simply described as

where black is ON and white is OFF. Rule 126 falls into both
of Wolfram’s “legalistic” and “totalistic” groups of rules
f19,32g. Rule 126 is useful as a conceptual model ofsbio-
logicald cell growth and of aschemicald catalytic process
because the central site survivessor is bornd unless the neigh-
borhood is too poorly populated or too crowded, in which
case it dies. Other ECA rules such as 22, 90, and 150 have
similar interpretationsf32,34,35g. It is interesting that rule
126 is both a very simple growth model and yet exhibits a
quite sophisticated dynamic behavior.

The present paper uses an approach introduced by An-
drecut and Ali f31g, whereby the density function for the
number of 1’s in a network at timet, is shown to satisfy a
simple first order difference equation. These authors then ap-
ply the familiar methods of bifurcation analysis, with respect
to the neighborhood sizek, to show the existence of chaos in

their generalized rule 126 model. A similar investigation of a
different generalization of rule 126 has been carried out by
Boccara and Rogerf36g.

The scalar density function discussed here is exact as op-
posed to the probabilistic approximation in CA mean field
theoryf19,37g. Furthermore our theory can also be extended
to all of the 32 legalistic rules by interpreting them as the
simple growth rules discussed above. Rule 126 has the most
sophisticated behavior in this way. For example the non-
trivial legalistic and totalistic ECA rule 22sf19g, p. 263, or
f32gd turns out to have a nonbifurcating density function
when analyzed by the methods of this paper. This extension
will be the subject of future work.

The model considered by Andrecut and Alif31g is a
simple Boolean network withN nodes, each node being in-
fluenced by exactlyk other nodes at each step of the Boolean
system. In other words each node has exactlyk parents, se-
lected randomly, so that the Boolean rule for each node is
determined only by the state of thek parents. The numberk
is fixed and the nodes of the network are updated synchro-
nously. Our emphasis in this paper is to extend that model by
allowing an asynchronous update rule for the N nodes. There
are various types of updating schemes in the literature such
as the clock schemef38,39g, the cyclic schemef30g, the
random independent schemef25g, and the random order
schemef25g. It has been shownf24g that properties of the
models are changed by the particular update scheme chosen.
At the same time the random Boolean networks have been
classified by Gershensonf40g. According to this author the
class of asynchronous random Boolean networkssARBNd
incorporates all the cases in which at each time point a single
node is selected in order to be updated. The node to be up-
dated can be chosen at random or according to a determin-
istic rule based on the above mentioned updating schemes.
He then generalizes the class of ARBN to the generalized
asynchronous random Boolean networkssGARBNd defined
as ARBNs which can update any number of nodes, picked at
random, at each time step. In this paper we analyze the dy-
namics of ARBNs and GARBNs, for cellular automata rule
126, using various updating schemes. We provide a model
for the probabilitypst+1d of finding a node in state 1 at time
t+1 given pstd, and study the dynamics of the networks
through sensitivity of the orbits to initial values, bifurcation
diagrams, and fixed point analysis.

In Sec. II we start with the study of the dynamics of
ARBNs. We show that the formula for the probability of
finding a node in state 1 does not depend on the updating
scheme, only on the fact that exactly one node is updated at
each time point. The formula is

pst + 1d = pstd +
1

N
f1 − pstd − pstdk+1 − „1 − pstd…k+1g,

wherek is the number of parents of each node, andN is the
size of the network. We show that ARBNs have a very-
ordered behavior under this model.

Section III is dedicated to a discussion of fixed points and
bifurcation that comes to explain the observed phenomena.
In f32g the present authors extend the results of Andrecut and
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Ali f31g, based on elementary cellular automata rule 126, to
networks with varying sizes of parent neighborhoods. In this
particular setting it is shown that “high connectivity can
erase all chaotic behavior in a synchronous network”. The
present paper, in a generalization off31g to asynchronous
networks, shows that high connectivitysi.e., letting k→`d
again swamps out chaos and periodicity and leaves only
stable fixed points. This regularity is shown to be quite gen-
eral with exceptions occurring only for a small number of
neighborhood distributions.

In Sec. IV we extend the study to GARBNs using several
different random number generators for the numberxt of
nodes to be updated at each time pointt. The recursive for-
mula for the probability of a node being in state 1 is very
similar to the one for ARBNs, except for the random termxt.
The formula is

pst + 1d = pstd +
xt

N
f1 − pstd − „1 − pstd…k+1 − pstdk+1g.

We show that the random generator ofxt has an impact on
the behavior of the system which can pass from chaos to
order or vice versa with transition phases of various lengths
depending on the underlying parameters.

II. ASYNCHRONOUS RANDOM BOOLEAN NETWORKS

Consider a network withN nodes. Each nodecn, n
=0,1,2,… ,N−1 can take on only two values 1 or 0. Often
this is interpreted as a system in which each node can be
either ON of OFF. At each time pointt the system can be in
one of the 2N possible states. If all the nodes update their
value at the same time the network is synchronous, otherwise
it is asynchronous. The evolution of the nodes from timet to
time t+1 is given by a Boolean rule which is considered the
same for all nodes. Each nodecn is assigned a random
“neighborhood” of parents, whose values at timet influence
the value ofcn at time t+1 through the following Boolean
rule. If cn and all its parents have the same value at timet
sthat is they are all either 0 or 1d, thencnst+1d=0, otherwise
cnst+1d=1. This generalizes rule 126 of cellular automata
f19,32g. The parents of a node are chosen randomly from the
remainingN−1 nodes and do not change thereafter. More
precisely, if a node hask parents, then a set ofk nodes is
chosen from the remainingN−1 nodes with probability
1/s k

N−1d.
This model is a description of a random Boolean cellular

automaton. The system is described by the number of parents
of each node. Observe that the quantity

N1std ª o
n=0

N−1

cnstd

gives the number of nodes that are in state 1 at timet. The
concentration of nodes in state 1 is given bys1/Ndon=0

N−1cnstd.
We are interested in finding the probabilitypst+1d that a
node is in state 1 at timet+1. In f31g it is shown thatpst
+1d is given by

pst + 1d = 1 − pstdk+1 − „1 − pstd…k+1,

wherekù1 is the number of parents of each node.sNote: we
take the liberty to provide the formula withk+1 rather than
k as it is misprinted inf31g.d

We extend this result by allowing an asynchronous update
rule for the N nodes. There are various types of updating
schemes in the literature such as the clock schemef38,39g,
the cyclic schemef30g, the random independent scheme
f25g, and the random order schemef25g. It has been shown
f24g that properties of the models are changed by the particu-
lar update scheme chosen. Based on the various possible
updating schemes the random Boolean networks have been
classified by Gershensonf40g. According to him the class of
asynchronous random Boolean networkssARBNd incorpo-
rates all the cases in which at each time point a single node is
selected in order to be updated. This case encompasses all
the previously mentioned updating schemes with the excep-
tion of the clock scheme. The node to be updated can be
chosen at random or according to a deterministic rule. Ger-
shensonf40g also generalizes the class of ARBN to the gen-
eralized asynchronous random Boolean networkssGARBNd
defined as ARBNs which can update any number of nodes,
picked at random, at each time step. This case incorporates
the previously mentioned clock scheme. In what follows we
will start by looking at ARBNs using the cyclic updating
scheme. As we shall see, the model provided for this case
can be generalized to the entire ARBN class. Next we will
focus on GARBNs using various random generators for the
number of nodes to be updated at each time point.

We start with the cyclic scheme in which at each time step
t only one node is updated. To simplify the first look at the
problem we fix the updating order to be the following: at
time t we update the nodet modN. Thus the nodes are up-
dated in order from 0 toN−1 everyN time steps. Observe
that from timet to time t+1 only one node may change its
state, so the total number of nodes that are in state 1 at time
t+1 cannot differ with more than one unit fromN1std. This
means that for largeN,pst+1d and pstd are approximately
the same. It would be of interest to look atpst+Td, the prob-
ability of finding a node in state 1 afterT iterations of the
system, whereT is large enough so that all nodes have been
updated at least once.

Denote byN0std the number of nodes that are 0 at timet.
Then N1std+N0std=N. We are interested in how node
t modN changes from timet to time t+1 in order to deter-
mine N1st+1d ,N0st+1d. Observe that nodet modN is in
state 1 at timet with probability pstd and in state 0 with
probability 1−pstd. If node t modN is 0 at timet then the
number of nodes that change from 0 to 1 at timet+1 is
N0→1

0 std=1−(1−pstd)k given that only the nodet modN
could change and that would happen only if all the parents of
this node are 0 as well. Similarly, the number of nodes that
remain 0 is N0→0

0 std=N0std−1+(1−pstd)k, the number of
nodes that change from 1 to 0 isN1→0

0 std=0, and the number
of nodes that remain 1 isN1→1

0 std=N1std. Similarly, if the
node t modN is 1 at time t we obtain the corresponding
number of nodesN0→1

1 std=0, N0→0
1 std=N0std, N1→0

1 std=pstdk,
N1→1

1 std=N1std−1+(1−pstdk)=N1std−pstdk.
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Thus we may write the formulas for the number of nodes
that either change or remain in the same state from timet to
time t+1 as follows:

N0→1std = „1 − pstd…f1 − „1 − pstd…kg = 1 − pstd − „1 − pstd…k+1,

N0→0std = fN0std − 1 + „1 − pstd…kg„1 − pstd… + N0stdpstd

= N0std − 1 + pstd + „1 − pstd…k+1,

N1→0std = pstdkpstd = pstdk+1,

N1→1std = N1std„1 − pstd… + „N1std − pstdk
…pstd

= N1std − pstdk+1.

One can easily check thatN0→1std+N0→0std+N1→0std
+N1→1std=N. We include for comparison the formulas ob-
tained inf31g for the same quantities, following a synchro-
nous updating rule:N0→1std=N0stdf1−(1−pstd)kg, N0→0std
=N0std(1−pstd)k, N1→0std=N1stdpstdk, N1→1std=N1std(1
−pstdk).

We can write now that

N1st + 1d = N0→1std + N1→1std

= N1std + f1 − pstd − pstdk+1 − „1 − pstd…k+1g,

N0st + 1d = N0→0std + N1→0std

= N0std − f1 − pstd − pstdk+1 − „1 − pstd…k+1g.

As a consequence, the probability of finding a node in state 1
at time t+1 is given by

pst + 1d =
N1st + 1d

N

= pstd +
1

N
f1 − pstd − pstdk+1 − „1 − pstd…k+1g. s1d

Note that if all the nodes are 0 at timet, thenpstd=0 so
pst+1d=0, which is to be expected since by the Boolean rule
all the nodes stay 0 at timet+1. Similarly, if all the nodes are
1 at timet, pst+1d=sN−1d /N by the formula, as well as by
the Boolean rule.

To study the behavior of this model we construct the map

fspd = p +
1

N
f1 − p − pk+1 − s1 − pdk+1g.

and observe thatpst+Td= fT(pstd), where fT represents
f + f + ¯ + f ,T times.

Observe that the updating scheme given byt modN has
not been explicitly used in generating the model, only the
fact that at a given time point exactly one node is updated.
Thus the model is suitable for any scheme in which the
nodes are updated one by one in a certain order, fixed or
random. The most common schemes in this category are the
random order scheme and the interlaced order schemef30g.
According to the fixed random order scheme, a permutation
of the first N natural numbers is performed. The nodes are
updated by repeating this order everyN time stepsf30g. In

the case of a more general random order scheme a new per-
mutation is selected everyN time stepsf25g. Another version
of the random order scheme assumes that at each time point
t a uniform numberu between 1 andN is generated and the
uth node is updatedf30g. For the interlaced order scheme, an
integer numberC.0 relatively prime toN is generated and
at time t the sCtdmodN node is updated. In other words,
every otherCth node is updated at consecutive time points.

The reason for the above discussion on ARBN updating
schemes is to show how many cases are encompassed by the
model s1d.

It is useful to provide some simulations to see how well
the model matches the real system. The simulations that fol-
low in this paper have been obtained by running Matlab and
Maple programs. Although we present only a few graphs in
this paper, the conclusions have been drawn from numerous
simulations run by the authors. In general we present only
typical graphs.

We restrict our attention to thet modN cyclic scheme.
The graphs are similar in other cases of ARBNs as expected.
The graphs in Fig. 1 represent simulations of the model and
the actual Boolean system for the case ofN=128 with k
=32. There are 9 different graphs representing iterations of
the system and the model, namely we graphpst+iterationd
versuspstd for iteration=2i, i =0,1,2,… ,8. We can deduce
the behavior of the system and the model for other cases
from these graphs, since all the other simulations obtained by
the authors for various parameter combinations are quite
similar to those in Fig. 1.

We make the following observations. There is an excel-
lent match between the model and the system for iterations
that go up to order 25−27 depending on the situation. For
higher number of iterations the match is also good, and both
the system and the model settle around a certain value ofpstd
suggesting that no matter what the initial conditions are, in
the long run there is either an absorbing state or cycles of

FIG. 1. sColor onlined Iterations of the system and the model for
ARBNs, with N=128 andk=32. We plot some of the first 256
iterations of the system and the model as specified in the labels. We
observe the perfect match for the first 32 iterations followed by a
transition phase in which the system and the model do not match
perfectly for iterations up to approximately 256 when the model and
the system reach a steady behavior with a very good match.
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states that differ only slightly in terms of the number of
nodes that are 1. That is, in the long run, the probability of
finding a node in state 1 is approximately the same regard-
less of the initial state of the system. We observe also that the
model has a slower rate of convergence towards this prob-
ability than the system in the range of 25−27 iterations, so
there is a transient phase in which the model is not a perfect
match for the system. This behavior is observed to be inde-
pendent of the number of nodes or parents of a node, how-
ever the transient phase holds for a longer time period for
higher values of the number of parentsk, and occurs later as
the number of nodes increases. Theoretical justification for
these remarks is provided in the next section.

We note that the graphs are very close to the first diagonal
for the first few iterates, as the number of nodes in state 1
does not change more than one from one time point to the
next.

The situation suggested by the previous graphs is clarified
even more by the sensitivity of the orbits to the initial values
for the model. We fix the parametersN andk and choose two
initial valuesps0d andqs0d as starting points for the orbits.
We iterate many times the equation of the model and com-
pute pstd and qstd for each time pointt. Then we plot the
error Estd= upstd−qstdu versust. Figure 2 shows the case of
N=128 andk=4. This graph is typical and very similar for
any other combinations of parameters considered in the ex-
periments, including small or large values for bothN andk.
We observe that the error converges to zero at a faster rate
for smaller values ofk and a slower rate for larger values of
k for a fixedN. Also, asN increases the behavior is the same,
but in general the convergence rates are slower. For the three
graphs in the figureps0d−qs0d=0.5, 0.01, and 0.0001, re-
spectively. We see that it does not matter how far apart the
initial values are, since the error will eventually converge to
zero.

In order to clarify even more the situation suggested by
the sensitivity of the orbits to the initial values, we construct
bifurcation diagrams with integer values for the parameterk.

We fix the number of nodesN=512 in Fig. 3, and we iterate
the functionfspd a number of times for various initial values
of p and plot the iterationsN/2 ,N,2N, and 5N. We observe
that there is a transient period for reduced number of itera-
tions, but after significant iterations the bifurcation map con-
verges to a value that gets closer and closer to 1 asN andk
increase. Thus, in the long run, the system exhibits a very
ordered behavior.

Finally, to end the analysis of the above updating cyclic
scheme we look at the map

fspd = p +
1

N
f1 − p − pk+1 − s1 − pdk+1g

and find its fixed points, that is we solve the equationfspd
=p. This leads to the equation inp

1 − p − pk+1 − s1 − pdk+1 = 0.

It is clear that ifk→` in the above equation, we obtainp
=1. Also, p=0 is obviously a fixed point of the map. Figure
4 shows this fact.

FIG. 4. sColor onlined Fixed points for the ARBN modelfspd
=p+s1/Ndf1−p−pk+1−s1−pdk+1g. The fixed points converge to 1
ask increases.

FIG. 2. sColor onlined Error plot for the ARBN model withN
=128 and k=4. In each graph we plot the errorEstd= upstd
−qstdu vs t. We start with initial valuesps0d andqs0d that are 0.5,
0.01, and 0.0001 apart, respectively. The error converges to zero in
all cases.

FIG. 3. sColor onlined Bifurcation diagram for the ARBN
model, with N=512. The model is iterated a number of times, as
specified in each graph, before plotting the values ofpstd, to under-
stand how the transient phase behaves. We observe the ordered
behavior of the system.
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III. DIGRESSION ON FIXED POINTS AND BIFURCATION

The map

fspd = p +
1

N
f1 − p − pk+1 − s1 − pdk+1g

from the ARBN scheme has the characteristic shape for all
positive integersN,k as the first iteration of Fig. 5.

A so-called cobweb stability diagramf41g shows immedi-
ately that the nonzero fixed point atp>0.8 is stable on thep
interval s0, 1g. The general theory of one-dimensional maps
then shows that there are no nontrivial period 2 or higher
period orbits. This, of course, is also indicated in the second
iteration graph of the same map, as in Fig. 5. In Fig. 6 we
show the collection of the first 30 iterations to clarify even
more this situation, forN=10, k=5. We observe that the
behavior is similar for larger values ofN, and even for a
larger number of iterations when transient phases have
passed.

Thus the ARBN scheme exhibits no bifurcations to high
order periodic orbits.

For future referencesthe GARBN schemed, we now gen-
eralize the following discussion by considering

fspd = p + af1 − p − pk+1 − s1 − pdk+1g. s2d

Then we find that

f8spd = 1 −a − ask + 1dpk + ask + 1ds1 − pdk.

Since a bifurcation from a fixed point to a period two point
occurs only whenf8spd=−1 at a fixed point, we then set
f8spd=−1 in the above equation to get

a + ask + 1dpk − ask + 1ds1 − pdk = 2

or

a =
2

1 + sk + 1dpk − sk + 1ds1 − pdk . s3d

Thus the value ofa where a bifurcation occurs depends on
both p andk. However, the fixed point condition

p + pk+1 + s1 − pdk+1 = 1 s4d

means thatp is a function ofk. This means thata is also a
function of k and in fact we get the graph in Fig. 7.

As a matter of fact, by denotinggspd= f(fspd) and solving
the system of equationsgspd=p, g8spd=−1 we are able to
obtain the value ofa where the second set of bifurcations
occur, for period 4 cycles. In Fig. 8 we grapha versusk for
the period 2 and 4 cycles for comparison. Due to the com-
plicated computations for solving the system of equations we
restricted our attention to values ofk from 1 to 6.

It is interesting to look at some three dimensional bifur-
cation diagrams forp as a function ofa andk. The system is
iterated 100 times to obtain the graphs in Fig. 9–12. Similar
results occur for more than 100 iterations. Figures 9 and 10
show slices alonga, whereas Figs. 11 and 12 show slices
alongk. We observe that the more complex behavior occurs
for generally large values ofa. At the same time, ask in-
creases the complex behavior occurs for smaller and smaller
values ofa.

We now show that the functionaskd defined in Eq.s3d
under the conditions4d satisfies the inequalityaskdù1/k.
This will allow us to prove that there are only stable fixed

FIG. 5. sColor onlined Plot of the first two iterations of the map
fspd=p+s1/Ndf1−p−pk+1−s1−pdk+1g in the caseN=10, k=5.

FIG. 6. sColor onlined Plot of the first 30 iterations of the map
fspd=p+s1/Ndf1−p−pk+1−s1−pdk+1g in the caseN=10, k=5.

FIG. 7. sColor onlined Plot of thea=2/f1+sk+1dpk−sk+1ds1
−pdkg as a function ofk, wherep+pk+1+s1−pdk+1=1. The function
approaches zero ask increases.
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points for the cyclic scheme. First observe that Eq.s4d is
equivalent to

s1 − pdk = 1 −
pk+1

1 − p
,

wherep cannot be equal to 1 since 1 does not satisfy Eq.s4d.
Using this one can see that the inequalityaskdù1/k is
equivalent to

2k ù 1 + sk + 1dpk − sk + 1dS1 −
pk+1

1 − p
D ⇔

3k

k + 1
ù

pk

1 − p
.

Thus it is enough to show that this last inequality holds. We
have the following result.

Proposition 1. Let kPN, k.0. If pP f0,1g and p+pk+1

+s1−pdk+1=1 then

3k

k + 1
ù

pk

1 − p
.

Proof. Clearly pÞ1 since 1 does not satisfy the hypoth-
esis. The only value inf0, 1

2
d that satisfies the hypothesis is

p=0 for kù2. Observe that fork=1 the hypothesis is
equivalent top2+s1−pd2=1−p which has roots 0 and12. We

claim that fork.1 the only value that satisfies the equation
is 0.

Clearly 0 satisfies the equation for allk. If 0 ,p,
1
2 then

0,p,1 and 0,1−p,1 so one has

pk+1 + s1 − pdk+1 , pk + s1 − pdk , ¯ , p2 + s1 − pd2.

Now p2+s1−pd2,1−p since this is equivalent to 2p2

,p⇔p,
1
2 which is true. Thus fork=2,3,… there is only

one value ofp satisfyingp+pk+1+s1−pdk+1=1 and situated
in f0, 1

2
g, namelyp=0.

Now we show that even more is true. There is a uniquep
in f 1

2 ,1g satisfying p+pk+1+s1−pdk+1=1, and actually 2
3

,p,1. Indeed, define the functionfsxd=xk+1+s1−xdk+1

+x−1. Its derivative isf8sxd=sk+1dfxk−s1−xdkg+1.0 if
xù

1
2. This is because ifxù

1
2 then x.1−x, so f8sxdù1

.0. Thusf is strictly increasing onf 1
2 ,1g so it can have at

most one root. But fs1d=1.0 and fs 2
3

d=s2k+1+1
−3kd /3k+1,0. This last fact is true sinces2k+1+1−3kd /3k+1

,0⇔1,3k−2k+1 which is true fork=2,3,… . Sof being
continuous and strictly increasing there is a unique rootp
P s 2

3 ,1d.

FIG. 9. sColor onlined Bifurcation surface ofp as a function of
k anda. The slices correspond to a fewk valuess1 through 6d and
the bifurcations occur alonga. We observe that the complex behav-
ior occurs for larger values ofk and for smaller values ofa as k
increases.

FIG. 10. sColor onlined Bifurcation surface ofp as a function of
k and a. The slices correspond tok values and the bifurcations
occur alonga. This is a different view of the previous figure to
show that the values ofa for which the bifurcations occur move
towards zero ask increases.

FIG. 11. sColor onlined Bifurcation surface ofp as a function of
k and a. The slices correspond toa values and the bifurcations
occur alongk. We observe the more complex behavior for largera.

FIG. 8. sColor onlined Plot of thea=2/f1+sk+1dpk−sk+1ds1
−pdkg as a function ofk, for period 2 and period 4 cycles.
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Now, sincep is a root ofp+pk+1+s1−pdk+1=1 we have
that pk+1=s1−pdf1−s1−pdkg so

pk

1 − p
=

1 − s1 − pdk

p
,

1

p
,

3

2
=

3 3 1

1 + 1
ø

3k

k + 1

for k = 2,3,….

Thus

pk

1 − p
ø

3k

k + 1
,

so the result is proven. j
We can now completely resolve the behavior of fixed

points for ARBN updating.
Theorem 1. For the cyclic schemea=1/N there are only

stable fixed points, i.e., no period doubling bifurcations.
Proof. Note that we always havekøN and thusa=1/N

ø1/k. Since it has been shown above thata.1/k for askd
representing ak value of fixed point bifurcation, then no such
point can exist. j

Now we turn our attention to the GARBN scheme.
Theorem 2. When a fixed number of two or more nodes

update at once, so thata=2/N,3 /N, etc. then there can only
be stable fixed points for sufficiently largek, i.e., any peri-
odicity or chaos disappear ask→`.

In order to start the proof we need a few lemmas.
Lemma 1. The stable fixed pointpk satisfiespk→1 ask

→`.
Proof. This is a consequence of a lim sup, lim inf argu-

ment in the fixed point condition

pk + pk
k+1 + s1 − pkdk+1 = 1.

For example suppose there is a sequence ofpk’s, pk1
,pk2

,…
such that pkn

→e,1 as n→`. Then pkn

kn→0 and
s1−pkn

dkn+1→0 asn→` which is a contradiction. j

Lemma 2. pk
k+1→0 ands1−pkdk+1→0 ask→`.

Lemma 3. pk
k→0 ask→`.

Lemma 4. s1−pkdk→0 ask→`.
Proof. Suppose lim supk→`s1−pkdk=e.0. Then

lim supk→`s1−pkd=lim supk→`e1/k=1, which is a contradic-
tion.

Proof of Theorem 2. We assumea=2/N since the other
cases are similar. Again it follows immediately that sincek
øN we havea=2/Nø2/k. But now suppose that

2

k
= askd =

2

1 + sk + 1dpk
k − sk + 1ds1 − pkdk .

Then

1 + sk + 1dpk
k − sk + 1ds1 − pkdk = k

or

pk
k − s1 − pkdk =

k − 1

k + 1
.

But the left-hand side converges to 0 ask→` while the
right-hand side converges to 1 ask→`. This is a contradic-
tion. j

IV. GENERALIZED ASYNCHRONOUS RANDOM
BOOLEAN NETWORKS

In this section we describe a mathematical model for a
GARBN. One familiar updating scheme for GARBNs is the
clock schemef24,38,39g. This scheme allows more than one
node to be updated at each time step, by assigning a timer to
each node and setting the period of each timer at random.
Observe that although the periods of timers are chosen at
random, they are fixed from the very beginning and do not
change thereafter. Thus the number of nodes to be updated at
each time point is fixed. We provide a more general view by
allowing a random number of nodes to be updated at each
time point. We use the same Boolean rule as in Sec. II, and
the same notation. We will focus on a few probability distri-
butions to generate the number of nodes to be updated at
each time point.

At time t we generatext, the number of nodes to be up-
dated at timet, according to a given discrete random variable
X with values1,2,… ,N. Then we select thext nodes ran-
domly sthat is any collection ofxt nodes has the same prob-
ability of being chosend. Observe that now we can write
N1std=N1

ustd+N1
sstd, whereN1

ustd is the number of nodes in
state 1 to be updated at timet, andN1

sstd is the number of
nodes in state 1 that do not change at timet and therefore
will be in state 1 at timet+1 as well. Similarly, we can write
a formula forN0std=N0

ustd+N0
sstd. ThusN1

ustd+N0
ustd=xt. Ob-

serve that ifpstd is the probability of finding a node in state
1 at timet, thenN1

ustd=xtpstd andN0
ustd=xt(1−pstd), and con-

sequently N1
sstd=N1std−xtpstd, N0

sstd=N0std−xt(1−pstd).
Given these quantities we can write the formulae for the
number of nodes that change or not from timet to time t
+1 as follows:

N0→1std = xt„1 − pstd…f1 − „1 − pstd…kg,

N1→0std = xtpstdk+1,

N0→0std = N0std − xt„1 − pstd… + xt„1 − pstd…k+1,

N1→1std = N1std − xtpstdk+1.

FIG. 12. sColor onlined Bifurcation diagram forp as a function
of k for a=0.9. This is a zoom in on a slice of Fig. 11.
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The sum of all these quantities isN as expected. Then the
probability of finding a node in state 1 at timet+1 is

pst + 1d =
N0→1std + N1→1std

N

= pstd +
xt

N
f1 − pstd − „1 − pstd…k+1 − pstdk+1g. s5d

If all the nodes are 0 at timet, then pstd=0 so pst+1d
=0, which is to be expected since by the Boolean rule all the
nodes stay 0 at timet+1. Similarly, if all the nodes are 1 at
time t, pst+1d=1−xt /N by the formula, as well as by the
Boolean rule. Observe that in this last case ifxt is close to 0,
pst+1d is close to 1, and ifxt is close toN, pst+1d is close to
0. Therefore the actual shape of a graph ofpst+1d versus
pstd could be quite diverse.

Thus we want to study the behavior of the maps

f tspd = p +
xt

N
f1 − p − s1 − pdk+1 − pk+1g, t = 1,2,3,… .

Observe that although the formulas5d is very similar to the
formula for the cyclic schemes1d, there is a basic difference
between them. The formula for the GARBNs depends onxt
which may change at each time pointt, thus the iterations of
the model do not represent simple compositions of a mapf
with itself.

Simulations of iterations of the system and the model
show that the model is in general a good approximation for
the Boolean system with a possible transitional phase as in
the case of the cyclic scheme. We provide in Figs. 13 and 14
some simulations in which the valuesxt are generated ac-
cording to the discrete uniform distribution onh1,2,3,… ,Nj
with N=256,k=128 sFig. 13d, and the binomial distribution
with number of trialsN=128, probability of a success 0.9,
andk=64 sFig. 14d. Other distributions have also been stud-
ied such as negative binomial, Poisson, power law on

h1,2,3,… ,Nj for various parameters. The results for these
distributions are similar to Fig. 1 for the cyclic scheme.

A few comments are in order. A general feature is that the
model is a good approximation for the system. In some cases
there is a transition phase, but after enough iterations the
model and the system become close regardless of the under-
lying distribution of xt. The only distribution for which it
could potentially take a long time to reach a steady state is
the binomial distribution with a large probability of a success
sFig. 14d. In this case the system may not reach a steady state
behavior for the amount of iterations considered. Another
common feature is thatpstd approaches a valuep ast→` for
the model in most casessexceptions were observed for the
uniform distribution and the binomial distributiond, which
suggests that the system is reaching an equilibrium with the
probability of finding a node in state 1 close top. Again this
is a feature encountered in the cases under study, with the
comment that in the case of the binomial distribution, the
valuespstd do not settle into a value, but oscillate within an
interval of values. The value ofp has a wide range depend-
ing on the distribution and on the parameters of the distribu-
tion and the number of parentsk. In general, the larger the
number of parentsk, the larger the probabilityp. The rate of
convergence toward the probabilityp may differ from one
case to another. But it is observed that if the number of nodes
xt to be updated at timest is largesthat is a significant num-
ber of nodes is updated at most time pointsd, the convergence
is faster.

To complete these observations, we note that the iteration
graphs can have various shapes for various distributions, es-
pecially during the transition phase.

Since the model is a good match for the system, we can
use it to understand the behavior of the system under various
scenarios. To do this we present again a study of the sensi-
tivity of the orbits to initial values, bifurcation diagrams, and
fixed point analysis.

FIG. 13. sColor onlined Iterations of the GARBN system and
model for the case whenxt is discrete uniform onh1,2,…Nj, N
=256,k=128. We plot some of the first 256 iterations of the system
and the model as specified in the labels. After about 25 iterations the
model reaches a steady range of values forpstd. There is a transient
phase in which the model and the system do not match perfectly,
but after several iterations, the match becomes quite clear. This
figure is typical for the case of the uniform distribution.

FIG. 14. sColor onlined Iterations of the GARBN system and
model for the case whenxt is binomial with number of trialsN
=128 and probability of a success 0.9. Here the number of parents
is k=64. We plot some of the first 256 iterations of the system and
the model as specified in the labels. It is clear that in this case the
model does not seem to converge to a fixed value ofpstd, but rather
oscillates in a certain range of values ofpstd. On the other hand, the
system does not settle either. This kind of situation occurs for large
values of the probability of a success. Note that the mean value of
the distribution, 115.2, is almost as large asN.
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The study of the sensitivity of the orbits to initial values
shows that for the cases whenxt is obtained from the Pois-
son, negative binomial, or power law distributions, the error
converges to zero rather fast. It is observed that as the num-
ber of nodesN increases the rate of convergence decreases,
and as the number of parentsk increases for a fixedN, the
rate of convergence increases too. Intuitively this makes
sense since the more nodes are in the network the more time
seems to be needed to reach a steady state. At the same time,
for a fixedN, if the nodes have more parents, then the node
interaction is more elaborate and speeds up the process of
reaching a steady behavior.

The case ofxt from a discrete uniform distribution on
h1,2,… ,Nj shows that if the number of nodesN is relatively
small, the error converges to zero fast. WhenN is large, the
error converges to zero faster for smaller values ofk, but in
most cases, depending on initial conditions, does settle only
after many iterations, as shown in Fig. 15.

Finally, in casext is from a binomial distribution, for
small probabilities of success, the error converges to zero.
Otherwise, the simulations performed show that the error
may or may not converge to zero. Even for a relatively small
number of nodes with small or large number of parents, or
for large number of nodes with small number of parents, the
error may not converge to zero.

We make the observation that the study of the error is
related to the analysis of the robustness of the system, indi-
cating how sensitive the system is to perturbations. The error
plot in this paper is an analog of the Hamming distance
analysis of other authorsf42g. The Hamming distance gives
the proportion of nodes that are different in two states of the
network.

The bifurcation diagrams support the behavior observed
so far. For the uniform distribution the bifurcation diagram
suggests that the system may reach a more ordered behavior
after many iterations as shown in Fig. 16, whereN=512.

We note that the bifurcation diagram in Fig. 16 is typical
also for the case of a binomial distribution with a probability
of success small or medium. For probability of a success

relatively close to 1, the bifurcation diagrams suggest a cha-
otic behavior for larger values ofk, as in Fig. 17. We note
that the graphs are similar for a much larger number of itera-
tions.

For the Poisson, negative binomial, and power law distri-
butions, the bifurcation diagrams are similar to the one in
Fig. 3 for the ARBN, with the observations that the ordered
behavior could be reached sooner or later, depending on the
parameters.

Observe that the fixed points of the map

fspd = p +
xt

N
f1 − p − pk+1 − s1 − pdk+1g

are the same as in the case of the cyclic scheme since the
factor xt does not change the equation which gives the fixed

FIG. 15. sColor onlined Error plot for the GARBN model in the
case whenxt is a discrete uniform distribution onh1,2,… ,Nj, N
=4096,k=2048. The error settles to zero after many iterations.

FIG. 16. sColor onlined Bifurcation diagram for the GARBN
model wherext is from a uniform distribution onh1,2,… ,Nj, N
=512. We observe that after 20N iterations the diagram suggests a
chaotic behavior, but in the long run it settles in an ordered
behavior.

FIG. 17. sColor onlined Bifurcation diagram for the GARBN
model wherext is from a binomial distribution withN=128 trials
and probability of a success 0.9. For certain values of the parameter
k the system can exhibit order; for other values it can exhibit chaos.
The mean value, 115.2, is large.
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points, therefore Fig. 4 is valid also in this case.
In conclusion, when random parameters dictate the evo-

lution of the system, its behavior can be quite diverse, rang-
ing from order to chaos.

Now we look more closely at the map

f tspd = p +
xt

N
f1 − p − pk+1 − s1 − pdk+1g

in which xt is the value of a random variableX taking values
in h1,2,… ,Nj. The shape of this map is dependent on the
random term and can exhibit a variety of features. We study
the iterations of this map using the following random vari-
ables: discrete, uniform, continuous uniform, Poisson, bino-
mial, negative binomial, power law, exponential, chi-square,
and normal. As observed, we have extended our study from
just discrete random variables to both discrete and continu-
ous, thus allowing also fractional values forxt, for a more in
depth analysis. In each case, the parameters of the distribu-
tions are selected so that the probability of generating values
outside the intervalf1,Ng is practically zero.

It is observed that in many cases the behavior is not very
complex, and there is a sometimes slow, but clear tendency
to a steady state. In the cases of the following distributions:
uniform, Poisson, binomial with small probability of success,
negative binomial, power law, exponential, chi-square with
small number of degrees of freedom, and normal with small
mean, the iteration graphs are approximately similar to those
in Fig. 6, with the observation that sometimes the iterations
may exhibit some degree of complexity which vanishes after
a short while. However, in the other cases, namely the chi-
square with larger number of degrees of freedom, binomial
with large probability of success, or normal with large mean
distributions, the iterations suggest either “distributional pe-
riodicity” sFig. 18d or ”distributional chaos”sFig. 19d. Fig-
ures 18 and 19 are from a binomial distribution, but the other
two cases mentioned previously produce graphs similar to
those in Fig. 18. The behavior is similar even after a much
larger number of iterations of the model.

Observe that the complex behavior exhibited by the itera-
tions of the model, such as in the case of the binomial dis-
tribution with probability of success 0.9 corresponds mainly
to large values ofxt. In terms of the network, this means that
a large number of nodes are updated at each time point. The
larger the number of nodes updated, the more complex the
behavior and the slower a potential steady state is reached.
Observe that a large number of nodes updated at each time
point brings the system closer to a synchronous random
Boolean network which can exhibit chaosf31g. In fact, if one
allows a→1 in Eq. s2d the resulting function represents ex-
actly the corresponding one obtained inf31g for synchronous
networks. This emphasizes previous results showing that
asynchrony could simplify the behavior of the system in
some cases, while synchrony can generate a more sophisti-
cated behaviorf25g. At the same time it becomes clear that
randomness or noise in the system can generate various types
of dynamics, emphasizing previous remarksf30g.

The above discussion with distributions generalizes the
observed behavior of the map

fspd = p + af1 − p − pk+1 − s1 − pdk+1g

studied in Sec. III, because the constanta, 0,a,1, can be
interpreted as the mean value of the distribution divided
by N.

V. CONCLUSIONS

In this paper we consider a Boolean network withN
nodes, each node havingk parents. We use a unique Boolean
rule for all the nodes, which generalizes rule 126 of cellular
automata. We study the behavior of the system in the case of
asynchronous random Boolean networkssARBNsd and gen-
eralized asynchronous random Boolean networkssGARBNsd
providing a model for the probability of a node being in state
1. We use the model to describe the system behavior through
error plots, bifurcation diagrams, and fixed point analysis.
We show that the ARBN scheme generates an ordered be-
havior, while the GARBN scheme generates mainly order

FIG. 18. sColor onlined Plot of the iterations 1–30, 2500–2530,
and 5000–5030 of the mapfspd=p+sxt /Ndf1−p−pk+1−s1−pdk+1g
in the caseN=1024,k=16. Herext are values of a binomial distri-
bution with number of trialsN=1024 and probability of success in
a trial u=0.9.

FIG. 19. sColor onlined Plot of the iterations 1–30, 2500–2530,
and 5000–5030 of the mapfspd=p+sxt /Ndf1−p−pk+1−s1−pdk+1g
in the caseN=1024,k=64. Herext are values of a binomial distri-
bution with number of trialsN=1024 and probability of success in
a trial u=0.9.
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but possibly chaos depending on the distributions used to
generate the number of nodes to be updated at each time
point, as well as the parameters of these distributions.

One possibility for future work consists on enlarging the
class of random number generators for the number of nodes
to be updated at each time point. Considering various sto-
chastic processes as potential random number generators
would be of interest, including some processes such as Mar-
kov processes, Poisson processes, Brownian motion or frac-
tional Brownian motion.

Further directions of investigation will include a generali-
zation of the work in this paper to the case of a nonconstant
number of parents studied by the authors inf32g under the
assumption of a synchronous network. Various distributions
of the number of parents could be considered, including
power-law rules.

It would be interesting to analyze the given Boolean sys-
tem and its behavior using asynchronous updating by finding
potential critical values for the number of parentsk, that is
values ofk for which the system is at “the edge between
order and chaos.” It has been shownf43g that for general
synchronous Boolean networks the critical value isk=2,
while for a certain class of asynchronous Boolean networks
such critical values do not existf29g. It is important to un-
derstand how a certain approach toward identification of the
dynamics of the system influence the final result. For ex-
ample inf29g the authors do not find a phase transitionsfrom

order to chaoTd for GARBN’s due to the usage of the so-
called annealed approximation method. On the other hand,
the author off42g questions their findings due to a different
approach using the normalized Hamming distance which
suggests a phase transition for 1,k,3 regardless of the
updating scheme. Considering a more in-depth analysis of
the Hamming distance of states obtained by small perturba-
tions, to identify regions where the critical values may lay, is
also a subject for future work.

The study of ARBNs and its variants is in its early stages.
However, it has already been observed that many processes
in natural or artificial networks, could be both asynchronous
and orderedf26g. Asynchrony can happen at a local level,
but the global system exhibits modularity. The authors of
f26g propose the spotlight model in which the Boolean net-
work is divided into modules, each module being associated
to a regulator node which controls the updates of the module,
depending on its own state. The amount of asynchronicity is
obtained by altering the number of modules used. Applying
the spotlight model to the work described in this paper could
generate some interesting results.

Last, but not least, considering various Boolean rules for
the nodes is of interest, since nodes of real systems usually
do not behave according to a fixed rule. In this respect, the
authors intend to extend the present work in the direction of
cellular automata rule 22f19,32g, as well as other legalistic
and totalistic rules.
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