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Asynchronous random Boolean network model based on elementary cellular automata rule 126
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This paper considers a simple Boolean network Wthodes, each node’s state at titnieeing determined
by a certain numbek of parent nodes, which is fixed for all nodes. The nodes, with randomly assigned
neighborhoods, are updated based on various asynchronous schemes. We make use of a Boolean rule that is a
generalization of rule 126 of elementary cellular automata. We provide formulas for the probability of finding
a node in state 1 at a tintdor the class of asynchronous random Boolean netw@RBN) in which only one
node is updated at every time step, and for the class of generalized ARBARBN) in which a random
number of nodes can be updated at each time point. We use simulation methods to generate consecutive states
of the network for both the real system and the models under the various schemes. The results match well. We
study the dynamics of the models through sensitivity of the orbits to initial values, bifurcation diagrams, and
fixed point analysis. We show, both theoretically and by example, that the ARBNs generate an ordered
behavior regardless of the updating scheme used, whereas the GARBNs have behaviors that range from order
to chaos depending on the type of random variable used to determine the number of nodes to be updated and
the parameter combinations.
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I. INTRODUCTION acterized by “local” interactions. They provide models in

computational and physical systems, in biological systems,

Due to their convenient and easy to unqlerstand structurey - as pattern formation, and in ecology, for example mod-
Boolean networks have been used extensively as models Qg g torest fire17,18. There has been a great interest in

complex networks such as genetic or biochemical networksyy qving the dynamics of these systems in light of Wolfram'’s
networks in artificial life, biophysics, condensed matter an nalysis of randomness in modeling nature, which catego-
solid-state physics, or statistical mechanics. Originally intro- ’

rizes the rules of elementary cellular automéCA) [19].
duced by Kauffmari1-3], the Boolean network models ap- |, this paper we analyze a random Boolean network whose
peal to any situation in which the activity of the nodes of the

. dynamics are established by a generalization of ECA rule
network can be quantized to only two states, ON and OFF. y yag

and each node updates its state based on logical relationships
with other nodes of the network. For example, most biologi-¢

cal phenomena are often described in binary language sugh,entia) in the formulation of Kauffman'sl/K models used

as respoqswe a_nd nonresponsive, upregulated_and dowr]h his random Boolean networks and other complex, adaptive
regulated,” despite their manifestation in the continuous do:

) systemd 3]. Such models yield insight into the dynamics of
maln[4].' Althc')ugh.a Boolean networ_k model may represent o ractive systems through the changing of connectivity
a very simplified view of a network, it retains in most Cases, as and the exploration of the ensuing emergent phenom-
meaningful information that can be used to study the dynam

. £ th K and ke inf di h ena. So it is important to model the behavior of intercon-
ics of the network and make Inferences regarding the reglg ieq systems in terms of coupling between components
system they model.

and understanding the means for moving the system into and
Boolean and random Boolean networks have been exte g g y

. . ) : "Sut of equilibrium states.

sively considered anq studied as models of ggnetlc regula- Understanding the dynamics of large interacting systems
tory networks4-14) with the goal of understanding the glo- j5 4ne of the challenges of statistical mechanics. In such
bal network dynamics. Knowing the long-run behavior of o 1o ms the noddsinits have diverse functions and they are
such networks would allow one to identify steady-state be'connected in random fashion to other nof&g). It is impor-
) : O%ant to understand under what circumstances the systems
fpr altering this steady-state as means of therapy. .Appl'caéelf-organize, and how the dynamics is influenced by the
tions of synchronous Boolean networks to biochemical SYSiyay the elements are connected and interact. The study of
tems have been studied if:5,16. scale-free networks by Barabasi and Ald@®-22 has cre-

Ce”“"’?“ autqmataCA) are a special case Of. Boolean net- ated the framework for the study of systems in which the
works, with various systems whose structure lies between th§isiibution of the node links obeys a power-law rule. These

two. .CA are dynamical sy;tems which are 'discrete in SPaCkings of systems have been found in many real-world com-
and time, operate on a uniform, regular lattice, and are Char|5Iex networks, such as the Internet, cellular metabolic net-
works, and research collaboration netwdik3]. Although in
this paper we assume that all nodes have a fixed number of
*Email address: dmatache@mail.unomaha.edu parents, future work will include the study of similar systems

It is known that related to condensed matter and solid-
ate physics, the dynamics of “spin-glasses” have been in-
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in which the number of parents varies according to specifiedheir generalized rule 126 model. A similar investigation of a
rules, such as power-law distributions. different generalization of rule 126 has been carried out by

One important aspect of all the studies mentioned abov8occara and Rogdi36].
is that the networks are assumed to be synchronous, that is The scalar density function discussed here is exact as op-
the nodes update their states at the same time. Howevegrpsed to the probabilistic approximation in CA mean field
various authors have observed that for many biological phetheory[19,37. Furthermore our theory can also be extended
nomena or cellular automata, including examples discusseid all of the 32 legalistic rules by interpreting them as the
above, asynchronous versions are more plausible modelsimple growth rules discussed above. Rule 126 has the most
For example, individual ants display aperiodic patterns ofsophisticated behavior in this way. For example the non-
active and resting periods, while the colony as a whole mayrivial legalistic and totalistic ECA rule 29 19], p. 263, or
exhibit synchronized activity; asynchronous activity of the[32]) turns out to have a nonbifurcating density function
neurons in the brain could lead to some global pattE2d$ when analyzed by the methods of this paper. This extension
Studies of asynchronous random Boolean netwOM&BN)  will be the subject of future work.
include properties of attractors of the ARBIN&5], role of The model considered by Andrecut and ABl] is a
the updating scheme of the nodes in the dynamics of theimple Boolean network witiN nodes, each node being in-
system and the emergence of modulafi2¢,26), rhythmic  fluenced by exactlk other nodes at each step of the Boolean
and nonrhythmic attractors in ARBN&7,28, critical values  system. In other words each node has exaktparents, se-
in ARBNs[29], and role of asynchrony in generating edge oflected randomly, so that the Boolean rule for each node is
chaos patterns in cellular automdt20]. In this paper we determined only by the state of theparents. The numbds
extend previous work on synchronous random Boolean neis fixed and the nodes of the network are updated synchro-
works governed by a generalization of ECA rule 13,32 nously. Our emphasis in this paper is to extend that model by
to the case of asynchronous updating. allowing an asynchronous update rule for the N nodes. There

Following Wolfram [19] it makes sense to think about are various types of updating schemes in the literature such
three types of randomness in modeling nature. There may kas the clock schemg38,39, the cyclic schemd30], the
randomness in the environment. Such phenomena are studieghdom independent schenj&5], and the random order
mathematically by, for example, Markov processes, probabischeme[25]. It has been showf24] that properties of the
listic cellular automatd33] or probabilistic Boolean net- models are changed by the particular update scheme chosen.
works [4]. The second Wolfram category is randomness inAt the same time the random Boolean networks have been
initial conditions. A prominent example here are randomclassified by Gershensdd0]. According to this author the
Boolean networks as discussed by Kauffni@h Wolfram  class of asynchronous random Boolean netwd&RBN)
puts the phenomenon of deterministic chaos into this seconiticorporates all the cases in which at each time point a single
group. The third group is comprised of intrinsic generators ofnode is selected in order to be updated. The node to be up-
randomness such as the elementary cellular automata rule 8@ted can be chosen at random or according to a determin-
and rule 110. istic rule based on the above mentioned updating schemes.

In this paper we discuss a random Boolean networkHe then generalizes the class of ARBN to the generalized
model which generalizes ECA rule 126 and therefore fallsasynchronous random Boolean netwo(i&ARBN) defined
into Wolfram second type of generation of randomness. Rulas ARBNs which can update any number of nodes, picked at
126 is most simply described as random, at each time step. In this paper we analyze the dy-
EEE ERC EOE BOC OEE COEC COOE OO0 namics _of ARBNs and GARBNS, for cellular automata rule

126, using various updating schemes. We provide a model
l ! l ! ! l ! 1 for the probabilityp(t+1) of finding a node in state 1 at time
= » n m " m m 0 t+1 given p(t), and study the dynamics of the networks
through sensitivity of the orbits to initial values, bifurcation
where black is ON and white is OFF. Rule 126 falls into bothdiagrams, and fixed point analysis.
of Wolfram’s “legalistic’ and “totalistic” groups of rules In Sec. Il we start with the study of the dynamics of
[19,32. Rule 126 is useful as a conceptual model(loib- ARBNs. We show that the formula for the probability of
logical) cell growth and of a(chemical catalytic process finding a node in state 1 does not depend on the updating
because the central site survives is born unless the neigh- scheme, only on the fact that exactly one node is updated at
borhood is too poorly populated or too crowded, in whicheach time point. The formula is
case it dies. Other ECA rules such as 22, 90, and 150 have
similar interpretation§32,34,39. It is interesting that rule
126 is both a very simple growth model and yet exhibits a
quite sophisticated dynamic behavior.

The present paper uses an approach introduced by Amwherek is the number of parents of each node, &his the
drecut and Ali[31], whereby the density function for the size of the network. We show that ARBNs have a very-
number of 1's in a network at timg is shown to satisfy a ordered behavior under this model.
simple first order difference equation. These authors then ap- Section Il is dedicated to a discussion of fixed points and
ply the familiar methods of bifurcation analysis, with respectbifurcation that comes to explain the observed phenomena.
to the neighborhood size to show the existence of chaos in In [32] the present authors extend the results of Andrecut and

1
pt+1)=p® + {1 -pO - P = (L -p()<*1],
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Ali [31], based on elementary cellular automata rule 126, to p(t+1)=1-pt)t- (1 -p(t)<?,

networks with varying sizes of parent neighborhoods. In this herek= 1 is th ber of ¢ h ]
particular setting it is shown that “high connectivity can Wherek=1is the number of parents of each notiéote: we

erase all chaotic behavior in a synchronous network”. Th ake _thg Iib_erty_ to pr_ovide the formula witkr- 1 rather than
present paper, in a generalization [fl] to asynchronous as itis m'spr"?ted i31].) .
networks, shows that high connectivitize., letting k— =) We extend this result by allowing an asynchronous up(_jate
again swamps out chaos and periodicity and leaves onl Iﬁ for th_e l:lhnol_otles.tThere a;]re vz;trr]lousl tylfeshof updating
stable fixed points. This regularity is shown to be quite gen-ﬁ emel'; n he : e;%urehsuc ‘ZS e %OC sg Bﬁ‘gﬁl’
eral with exceptions occurring only for a small number of the cyclic sc em¢30], the random independent scheme
neighborhood distributions [25], and the random order scherf#s]. It has been shown

In Sec. IV we extend the study to GARBNS using several 24 that properties of the models are changed by the particu-
different random number generators for the numieof lar update scheme chosen. Based on the various possible
nodes to be updated at each time pdairithe recursive for- updating schemes the random Boolean networks have been
mula for the probability of a node being in state 1 is Veryclassﬁed by Gershens@d0]. According to him the class of

similar to the one for ARBNSs, except for the random tegm asynchronous ran<_jom I_300Iean net.wo(lQeR.BN) incorpo-
The formula is rates all the cases in which at each time point a single node is

selected in order to be updated. This case encompasses all
X the previously mentioned updating schemes with the excep-
p(t+1) = p(t) + —[1 - p(t) = (L - p(t)¥* - p(t)<*1]. tion of the clock scheme. The node to be updated can be
N chosen at random or according to a deterministic rule. Ger-
shensorj40] also generalizes the class of ARBN to the gen-
eralized asynchronous random Boolean netwd@&aRBN)
Befined as ARBNs which can update any number of nodes,
i)icked at random, at each time step. This case incorporates
the previously mentioned clock scheme. In what follows we
will start by looking at ARBNs using the cyclic updating
Il. ASYNCHRONOUS RANDOM BOOLEAN NETWORKS scheme. As we shall see, the model provided for this case
) ) can be generalized to the entire ARBN class. Next we will
Consider a network withN nodes. Each nod@, n 40,5 on GARBNS using various random generators for the
=0,1,2,..,N-1 can take on only two values 1 or 0. Often , ,mber of nodes to be updated at each time point.

this is interpreted as a system in which each node can be \ye start with the cyclic scheme in which at each time step
either ON of OFF. At each time pointthe system can be in ¢ 51y one node is updated. To simplify the first look at the

one of the 2 possi'ble states. If aII_the nodes update the,irproblem we fix the updating order to be the following: at
value at the same time the network is synchronous, otherwisg o + e update the nodemodN. Thus the nodes are up-

it is asynchronous. The evolution of the nodes from tit®  4.:04 in order from 0 tiN-1 everyN time steps. Observe
time t+1 is given by a Boolean rule which is considered they,5t from timet to time t+1 only one node may change its

same for all nodes. Each nodg is assigned a random giate 5o the total number of nodes that are in state 1 at time
“neighborhood” of parents, whose values at titriafluence . 1 cannot differ with more than one unit froMy(t). This

the value ofc, at timet+1 through the following Boolean o< that for largé\, p(t+1) and p(t) are approximately
rule. If ¢, and all its parents have the same value at ttme the same. It would be ,of interest to lookgit+T), the prob-
(that is they are all either 0 op lthenc(t+1)=0, otherwise ability of 'finding a node in state 1 aftér iterati’ons of the

Cy(t+1)=1. This generalizes rule 126 of cellular automatasystem wherd is large enough so that all nodes have been
[19,32. The parents of a node are chosen randomly from th%pdatet':i at least once

remainingN—1 nodes and do not change thereafter. More Denote byNq(t) the number of nodes that are 0 at tite

recisely, if a node hak parents, then a set & nodes is _ . .
I[c)hosen yfrom the remairl?ing\l—l nodes with probability Then Ny(t) +No(f)=N. We are. mterest_ed in how node
1/(NE1)- tmodN changes from time to timet+1 in order to Qet_er-
mine Nj(t+1),Ny(t+1). Observe that nodé modN is in
éate 1 at timet with probability p(t) and in state 0 with
probability 1 —p(t). If nodet modN is O at timet then the

number of nodes that change from 0 to 1 at titrel is

We show that the random generatorxgtas an impact on
the behavior of the system which can pass from chaos t
order or vice versa with transition phases of various length
depending on the underlying parameters.

This model is a description of a random Boolean cellular,
automaton. The system is described by the number of paren
of each node. Observe that the quantity

N-1 NS ,()=1-(1-p(t))* given that only the node modN
N, (t) := > 0) could change and that would happen only if all the parents of
n=0 this node are 0 as well. Similarly, the number of nodes that

remain 0 is Ngﬂo(t):No(t)—1+(1—p(t))'<, the number of
gives the number of nodes that are in state 1 at tinhe  nodes that change from 1 to ON§ (1)=0, and the number
concentration of nodes in state 1 is given(lyN)=N-7c,(t).  of nodes that remain 1 819 (1)=Ny(t). Similarly, if the
We are interested in finding the probabilip(t+1) that a nodetmodN is 1 at timet we obtain the corresponding
node is in state 1 at time+1. In[31] it is shown thatp(t ~ number of noded3 ,(1)=0, N3 ,(1)=No(t), NI () =p(t)¥,
+1) is given by NI 1()=Ny(t) = 1+(L-p(®)*) =Ny (t) - p(t)~.
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Thus we may write the formulas for the number of nodes ! ! 1
that either change or remain in the same state from titoe g g I
time t+1 as follows: & & "
o 4] ()
No_1(t) = (1 = p(t)[1 = (1 = p(t))]= 1 —p(t) = (1 = p(t))**, ° p) ve p(t) v p(t) !
1 1 1
No_o(t) = [No(t) = 1 + (L = p(t))](1 = p(t)) + No(t)p(t) g g g
& 4 &
=Ng(t) = 1 +p(t) + (1 - p(t))“*,
K D) v ) P ® k
[ p
N1_o(t) = p(t)p(t) = p(t)*, 1 = 1 prrere e e
k g ’/&4‘,39 3: o g ———— model
Ny _1(0) = Na(D(L = p(1) + (Na() = pO)P(D) 2 z i mose

= Ny(t) = p()<*L. % 1 % 1 % 1
. P(t) p(t) Pty

One can easily check tha¥y ,(t)+Ng_o(t) +Nq_o(t)
+N;_1(t)=N. We include for comparison the formulas ob-  FIG. 1. (Color onling lterations of the system and the model for
tained in[31] for the same quantities, following a synchro- ARBNs, with N=128 andk=32. We plot some of the first 256
nous updating ruleNy .1(t)=No(t)[1-(1-p(t))¥], No_o(t) iterations of the system and the model as specified in the labels. We
=No(D)(L-p())%,  Ni_ot)=Ny(t)p(t)¥, N;_()=Ny(t)(1  observe the perfect match for the first 32 iterations followed by a
—p(t)k). transition phase in which the system and the model do not match

We can write now that perfectly for iterations up to approximately 256 when the model and
the system reach a steady behavior with a very good match.

N.(t+1)=N f)+N t
16+ D= No—s(®) + Ni—s(V the case of a more general random order scheme a new per-

=Ny (1) +[1 - p(t) - p(H)*1 = (1 - p(t))*+1], mutation is selected evely time stepg25]. Another version
of the random order scheme assumes that at each time point
No(t +1) = No_o(t) + Ny _o(t) t a uniform numbeu between 1 andN is generated and the
uth node is updatef30]. For the interlaced order scheme, an
=No(t) =[1 = p(t) = p(t)** = (1 = p(t))*1]. integer numbe >0 relatively prime toN is generated and
As a consequence, the probability of finding a node in state &t fimet the (C)modN node is updated. In other words,
at timet+1 is given by every otherCth node is updateql at consecutlve time pomt;.
The reason for the above discussion on ARBN updating
O Ny(t+1) schemes is to show how many cases are encompassed by the
pt+1)= model (1).

1 It is useful to provide some simulations to see how well
=p(t) + =[1 = p(t) = p(O**L = (1 = p(H*]. (1 the model matches the real system. The simulations that fol-
P N[ P = p(1) (2=p)™1. D low in this paper have been obtained by running Matlab and
. . _ Maple programs. Although we present only a few graphs in
Note that if all the nodes are 0 at timgthen p(t)=0 so this paper, the conclusions have been drawn from numerous

p(t+1)=0, which is to be expected since by the Boolean rlJIesimulations run by the authors. In general we present only

all the nodes stay 0 at tinte- 1. Similarly, if all the nodes are typical graphs.
1 at timet, p(t+1)=(N-1)/N by the formula, as well as by ~"\ye restrict our attention to themodN cyclic scheme.

the Boolean rule. _ The graphs are similar in other cases of ARBNs as expected.
To study the behavior of this model we construct the maprpe graphs in Fig. 1 represent simulations of the model and
1 the actual Boolean system for the caseNo¥128 with k
f(p)=p+ N[l -p-pt-(1-p*i. =32. There are 9 different graphs representing iterations of
the system and the model, namely we gragh+iteration
and observe thatp(t+T)=fT(p(t)), where fT represents versusp(t) for iteration=2,i=0,1,2,..,8. We can deduce
fofo---of | T times. the behavior of the system and the model for other cases
Observe that the updating scheme giventioyodN has  from these graphs, since all the other simulations obtained by
not been explicitly used in generating the model, only thethe authors for various parameter combinations are quite
fact that at a given time point exactly one node is updatedsimilar to those in Fig. 1.
Thus the model is suitable for any scheme in which the We make the following observations. There is an excel-
nodes are updated one by one in a certain order, fixed dent match between the model and the system for iterations
random. The most common schemes in this category are tHbat go up to order 2-27 depending on the situation. For
random order scheme and the interlaced order sch@6je  higher number of iterations the match is also good, and both
According to the fixed random order scheme, a permutatiothe system and the model settle around a certain valpé&pf
of the firstN natural numbers is performed. The nodes aresuggesting that no matter what the initial conditions are, in
updated by repeating this order eveMytime stepg30]. In  the long run there is either an absorbing state or cycles of
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o4l " ' " " " == p(0) = 087683, q(0) = 0.37683 ! N )
= 0.8 0.8
W o2 - _os _os
° . A . k=4 5
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t
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ozt i 0.2 ©  2Niterations 0.2 - 5N iterations
- N=512 - N=512
% 50 100 150 200 250 300 350 400 450 500 o 200 400 600 o 20 40 600
t
FIG. 2. (Color onling Error plot for the ARBN model withN FIG. 3. (Color onling Bifurcation diagram for the ARBN

=128 and k=4. In each graph we plot the err&(t):‘p(t) model, withN=512. The model is iterated a number of times, as

—~q()| vst. We start with initial valuesp(0) andq(0) that are 0.5, ~ specified in each graph, before plotting the valuep(®f, to under-
0.01, and 0.0001 apart, respectively. The error converges to zero Bfand how the transient phase behaves. We observe the ordered
all cases. behavior of the system.

states that differ only slightly in terms of the number of \we fix the number of nodes=512 in Fig. 3, and we iterate
nodes that are 1. That is, in the long run, the probability ofthe functionf(p) a number of times for various initial values
finding a node in state 1 is approximately the same regards , ang plot the iteration8l/2,N, 2N, and . We observe
less of the initial state of the system. We observe also_that thﬁwat there is a transient period for reduced number of itera-
model has a slower rate of convergeor%ce Towards this prol, ¢ "t after significant iterations the bifurcation map con-
ability than the system in the range of-2' iterations, so verges to a value that gets closer and closer to il asndk

there is a transient phase in which the model is not a perfe%crease. Thus, in the long run, the system exhibits a very

match for the system. This behavior is observed to be mdeérdered behavior.

pendent of the number of nodes or parents of a node, how- _. . . .
ever the transient phase holds for a longer time period for Finally, to end the analysis of the above updating cyclic

higher values of the number of pareftsand occurs later as scheme we look at the map
the number of nodes increases. Theoretical justification for 1 . .
these remarks is provided in the next section. f(p)=p+ N[l —p-pt-(1-p
We note that the graphs are very close to the first diagonal ) )
for the first few iterates, as the number of nodes in state £nd find its fixed points, that is we solve the equatfép)
does not change more than one from one time point to th&pP- This leads to the equation m
next. . o 1-p-pt-(1-p*t=0.
The situation suggested by the previous graphs is clarified
even more by the sensitivity of the orbits to the initial valueslt is clear that ifk—c in the above equation, we obtam
for the model. We fix the parametexsandk and choose two =1. Also, p=0 is obviously a fixed point of the map. Figure
initial valuesp(0) andq(0) as starting points for the orbits. 4 shows this fact.
We iterate many times the equation of the model and com-

pute p(t) and q(t) for each time point. Then we plot the k
error E(t)=|p(t)—q(t)| versust. Figure 2 shows the case of T ‘,,..-v"“”""

N=128 andk=4. This graph is typical and very similar for oo Let”

any other combinations of parameters considered in the ex- 7 .”

periments, including small or large values for bdtrandk. osf

We observe that the error converges to zero at a faster rate  aost»

for smaller values ok and a slower rate for larger values of oal

k for a fixedN. Also, asN increases the behavior is the same, 0al

but in general the convergence rates are slower. For the three

graphs in the figurgp(0)-q(0)=0.5, 0.01, and 0.0001, re- A

spectively. We see that it does not matter how far apart the .

initial values are, since the error will eventually converge to R R T A M A I T

Zero.

In order to clarify even more the situation suggested by FIG. 4. (Color onling Fixed points for the ARBN model(p)
the sensitivity of the orbits to the initial values, we construct=p+(1/N)[1-p-p*1-(1-p)**1]. The fixed points converge to 1
bifurcation diagrams with integer values for the paramkter ask increases.
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FIG. 5. (Color onling Plot of the first two iterations of the map
f(p)=p+(1/N)[1-p-pk*1=(1-p)**1] in the caseN=10, k=5.

Ill. DIGRESSION ON FIXED POINTS AND BIFURCATION

The map

1
fm=p+[1-p- ptl—(1-p)l

PHYSICAL REVIEW E 71, 026232(2005

1.5

a (k)

25 30 35
k

L N L
5 10 15 20 40 45

FIG. 7. (Color onling Plot of the a=2/[1+(k+1)p*-(k+1)(1
-p)¥] as a function ok, wherep+p**1+(1-p)k*1=1. The function
approaches zero dsincreases.

For future referencéthe GARBN schemg we now gen-
eralize the following discussion by considering

f(p) =p+afl-p-p*t-(1-p*.
Then we find that
f'(p) =1 -a-ak+)p“+ ak+ 1) (1 -p)*.

(2)

from the ARBN scheme has the characteristic shape for al?ince a bifurcation from a fixed point to a period two point

positive integers\,k as the first iteration of Fig. 5.
A so-called cobweb stability diagrapd1] shows immedi-
ately that the nonzero fixed point p& 0.8 is stable on the

occurs only whenf’(p)=-1 at a fixed point, we then set
f’(p)=-1 in the above equation to get

a+ak+1)pf-ak+)(1-pk=2

interval (0, 1]. The general theory of one-dimensional maps
then shows that there are no nontrivial period 2 or higheP'
period orbits. This, of course, is also indicated in the second 2

iteration graph of the same map, as in Fig. 5. In Fig. 6 we
show the collection of the first 30 iterations to clarify even

more this situation, foN=10, k=5. We observe that the
behavior is similar for larger values @, and even for a

larger number of iterations when transient phases have

passed.

“T 1k Dpf - ke DI -pF ©

Thus the value ofxr where a bifurcation occurs depends on
both p andk. However, the fixed point condition

p+ple(1-pki=1 (4)

Thus the ARBN scheme exhibits no bifurcations to highmeans thap is a function ofk. This means thai is also a

order periodic orbits.

fi(p)i=1,2,..,30

o © © © © o9 @©

W o (4] N -~ ® (-]
.

e
N

e
o

0

. \ A
0.5 0.8 0.9 k]
p

s L L s
0 0.1 0.2 0.3 0.4

FIG. 6. (Color onling Plot of the first 30 iterations of the map
f(p)=p+(1/N)[1-p-pk*1-(1-p)**1] in the caseN=10, k=5.

function ofk and in fact we get the graph in Fig. 7.

As a matter of fact, by denoting(p)=f(f(p)) and solving
the system of equationg(p)=p, g’'(p)=-1 we are able to
obtain the value ofx where the second set of bifurcations
occur, for period 4 cycles. In Fig. 8 we graphversusk for
the period 2 and 4 cycles for comparison. Due to the com-
plicated computations for solving the system of equations we
restricted our attention to values kffrom 1 to 6.

It is interesting to look at some three dimensional bifur-
cation diagrams fop as a function ofxr andk. The system is
iterated 100 times to obtain the graphs in Fig. 9—12. Similar
results occur for more than 100 iterations. Figures 9 and 10
show slices alongy, whereas Figs. 11 and 12 show slices
alongk. We observe that the more complex behavior occurs
for generally large values ok. At the same time, ak in-
creases the complex behavior occurs for smaller and smaller
values ofa.

We now show that the function(k) defined in Eq.(3)
under the condition4) satisfies the inequalityr(k) = 1/k.
This will allow us to prove that there are only stable fixed
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1 15 2 25 3 3.5 4
k

FIG. 8. (Color onling Plot of the a=2/[1+(k+1)p*-(k+1)(1
-p)¥] as a function ok, for period 2 and period 4 cycles.

points for the cyclic scheme. First observe that E4. is
equivalent to

k+1

p
1-pk=1-—,
(1-p) 1-p
wherep cannot be equal to 1 since 1 does not satisfy(Eq.
Using this one can see that the inequalityk)=1/k is
equivalent to

k+1 k
p ) %k _ p

2k=1+(k+1)pk- k+1<1— - = )
( P ) 1-p k+1 1-p

Thus it is enough to show that this last inequality holds. Wef)

have the following result.
Proposition 1 Letke N, k>0. If pe[0,1] and p+p**!
+(1-p)¥1=1 then
k
k+1 1-p

PHYSICAL REVIEW E 71, 026232(20095

Z 0.5

04— L

FIG. 10. (Color onling Bifurcation surface op as a function of
k and a. The slices correspond th values and the bifurcations
occur alonga. This is a different view of the previous figure to
show that the values ak for which the bifurcations occur move
towards zero a& increases.

claim that fork>1 the only value that satisfies the equation
is 0.

Clearly 0 satisfies the equation for @llIf 0 < p<% then
0<p<1land 0<1-p<1 so one has

P+ (1-pkl<p+(1-pk< - <p?+(1-p>

Now p?+(1-p)><1-p since this is equivalent to 2
<pe p<% which is true. Thus fok=2,3,... there is only
ne value ofp satisfyingp+p“*'+(1-p)¥t=1 and situated
in [O,%], namelyp=0.

Now we show that even more is true. There is a unigue
in [$,1] satisfying p+p<1+(1-p)**1=1, and actually2
<p<1. Indeed, define the functiom(x)=x<"1+(1-x)k1
+x—-1. Its derivative is¢’(x)=(k+1)[x=(1-x)K]+1>0 if
x=3. This is because ik=3 thenx>1-x, so ¢'(x)=1

Proof. Clearly p# 1 since 1 does not satisfy the hypoth- > 0- Thus¢ is strictly increasing o3, 1] so it can Vllal\/e at
— —_ +
esis. The only value ih0,3) that satisfies the hypothesis is MOSt one root.  But ¢(1)=1>0 and (3)=(21+1

p=0 for k=2. Observe that fork=1 the hypothesis is
equivalent top?+(1-p)?=1-p which has roots 0 and. We

4 ¢

% 2 -
WY -

0.8

06

Pl

04

0.2

O

FIG. 9. (Color online Bifurcation surface op as a function of
k and a. The slices correspond to a fdwwalues(1 through 6 and

the bifurcations occur along. We observe that the complex behav-

ior occurs for larger values df and for smaller values of ask
increases.

-39/3“1<0. This last fact is true sinc&@k1+1-3)/3k1
<0< 1< 3421 which is true fork=2,3,... . So ¢ being
continuous and strictly increasing there is a unique ot
IS (% , 1).

FIG. 11. (Color onling Bifurcation surface op as a function of
k and a. The slices correspond ta values and the bifurcations

occur alongk. We observe the more complex behavior for larger
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oy Proof of Theorem 2We assumex=2/N since the other
09 fCUR cases are similar. Again it follows immediately that sirtkce
08— ; <N we havea=2/N=<2/k. But now suppose that
0.7 —
BE 2 2
o8 —=ak) = " -
Zosi k 1+(k+Dpc=(k+ (1 -py
>4 Then
1+ (k+ D= (k+ (L -po=k
0.1 — or
Tl e e e s s so 7o s o 40 K—1
) pt—(l—pk)k:le-
FIG. 12. (Color onling Bifurcation diagram fopp as a function
of k for «=0.9. This is a zoom in on a slice of Fig. 11. But the left-hand side converges to 0 ks>~ while the
right-hand side converges to 1 las> . This is a contradic-
Now, sincep is a root ofp+pk*1+(1-p)¥*1=1 we have tion. u

that p1=(1-p)[1-(1-p)"] so

Pt _1-(-p*_1 _ 3k
1-p p p 1+1 k+1 In this section we describe a mathematical model for a
fork=2,3,... GARBN. One familiar updating scheme for GARBNSs is the
clock schemég24,38,39. This scheme allows more than one
Thus node to be updated at each time step, by assigning a timer to
o 3k each node and setting the period of each timer at random.
1 _

IV. GENERALIZED ASYNCHRONOUS RANDOM
3X1 3k BOOLEAN NETWORKS

—_— Observe that although the periods of timers are chosen at

p k+1l random, they are fixed from the very beginning and do not
change thereafter. Thus the number of nodes to be updated at
each time point is fixed. We provide a more general view by
allowing a random number of nodes to be updated at each
time point. We use the same Boolean rule as in Sec. Il, and
the same notation. We will focus on a few probability distri-
butions to generate the number of nodes to be updated at
each time point.

At time t we generate;, the number of nodes to be up-
dated at timd, according to a given discrete random variable
X with valuesl,2,...,N. Then we select the nodes ran-
domly (that is any collection ok, nodes has the same prob-
ability of being chosen Observe that now we can write
N1(t)=Nj(t) +N3(t), whereNj(t) is the number of nodes in
state 1 to be updated at timeand N3(t) is the number of
nodes in state 1 that do not change at timend therefore
will be in state 1 at time+1 as well. Similarly, we can write
a formula forNy(t) =Ng(t) +N(t). ThusNj(t) +Ng(t) =x,. Ob-

so the result is proven.

We can now completely resolve the behavior of fixed
points for ARBN updating.

Theorem 1For the cyclic schema&=1/N there are only
stable fixed points, i.e., no period doubling bifurcations.

Proof. Note that we always have<N and thusa=1/N
<1/k. Since it has been shown above that 1/k for a(k)
representing & value of fixed point bifurcation, then no such
point can exist. |

Now we turn our attention to the GARBN scheme.

Theorem 2When a fixed number of two or more nodes
update at once, so that=2/N, 3/N, etc. then there can only
be stable fixed points for sufficiently larde i.e., any peri-
odicity or chaos disappear &s-c°.

In order to start the proof we need a few lemmas.

Lemma 1 The stable fixed poinp, satisfiesp,— 1 ask

Proof. This is a consequence of a lim sup, lim inf argu- S€™Ve that ifp(t) is the probability of finding a node in state
ment in the fixed point condition 1 at timet, thenN3(t) =x;p(t) andNg(t) =x,(1-p(t)), and con-
1 » sequently Ni(t):N_l_(t)—xtp(t), 3(_t):N0(t)—xt(1—p(t)).
Pt P+ (L-pY =1, Given these quantities we can write the formulae for the

number of nodes that change or not from tilm& time t

For example suppose there is a sequenge,/sf Pi, 1 Py -+ +1 as follows:

such that P, — €<l as n—c. Then pknk”—>0 and

(1-py )" —0 asn— e which is a contradiction. [ | No—1(t) =x(1 = p(t))[1 - (1 - p(t))],
Lemma ZpE”HO and(1-p)<1—0 ask— o.
Lemma 3p;—0 ask— . N;_o(t) = xp(H**,
Lemma 4 (1-p)<—0 ask— .
Proof.  Suppose limsyp..(1-p)¥=e>0. Then No_o(t) = No(t) = (1 = p(t)) + x,(1 — p(t))**L,
lim sup_..(1-py =lim sup._...*=1, which is a contradic-
tion. Ny_1(t) = Ny(t) = xp(t)<+L.
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FIG. 13. (Color onling Iterations of the GARBN system and FIG. 14. (Color onling lIterations of the GARBN system and
model for the case wher is discrete uniform oq1,2,...N}, N model for the case wher, is binomial with number of trialdN
=256,k=128. We plot some of the first 256 iterations of the system=128 and probability of a success 0.9. Here the number of parents
and the model as specified in the labels. After abSute2ations the  is k=64. We plot some of the first 256 iterations of the system and
model reaches a steady range of valuespfor. There is a transient  the model as specified in the labels. It is clear that in this case the
phase in which the model and the system do not match perfectiynodel does not seem to converge to a fixed valug(of but rather
but after several iterations, the match becomes quite clear. Thigscillates in a certain range of valuespgf). On the other hand, the
figure is typical for the case of the uniform distribution. system does not settle either. This kind of situation occurs for large

values of the probability of a success. Note that the mean value of

The sum of all these quantitieslisas expected. Then the 1€ distribution, 115.2, is almost as largefas

probability of finding a node in state 1 at tine 1 is {1,2,3,...,N} for various parameters. The results for these
No_1(t) + Ny_4(0) distributions are similar to Fig. 1 for the cyclic scheme.
p(t+1)= 01 -1 A few comments are in order. A general feature is that the

N model is a good approximation for the system. In some cases

X, there is a transition phase, but after enough iterations the
=p(t) + N[l -p(t) - (L -p)-p®*']. (5)  model and the system become close regardless of the under-
lying distribution of x,. The only distribution for which it

If all the nodes are O at timg then p(t)=0 so p(t+1) coulq potgntia]ly _tak(_a a Io.ng time to reach a steady state is
=0, which is to be expected since by the Boolean rule all théh€ binomial distribution with a large probability of a success
nodes stay 0 at time+ 1. Similarly, if all the nodes are 1 at (Fig- 14. In this case the system may not reach a steady state
time t, p(t+1)=1-x/N by the formula, as well as by the behavior for the amount of iterations considered. Another
Boolean rule. Observe that in this last casg, i close to 0, common fe_ature is thau(t) appro_aches a valyeast — o for
p(t+1) is close to 1, and ik, is close toN, p(t+1) is close to the model in most casggxceptions were observed for the

0. Therefore the actual shape of a graphpéf+1) versus uniform distribution and the binomial distributipnwhich
) L P graphp suggests that the system is reaching an equilibrium with the
p(t) could be quite diverse.

) probability of finding a node in state 1 closefoAgain this
Thus we want to study the behavior of the maps is a feature encountered in the cases under study, with the
X% o1 kel ~ comment that in the case of the binomial Qistribu'gion, the
f(p)=p+ N[l —-p-(A-p-p, t=1,2,3,.. . valuesp(t) do not settle into a value, but oscillate within an
interval of values. The value gf has a wide range depend-
Observe that although the formu(8) is very similar to the ing on the distribution and on the parameters of the distribu-
formula for the cyclic schemél), there is a basic difference tion and the number of parenks In general, the larger the
between them. The formula for the GARBNs dependscon number of parentk, the larger the probabilitp. The rate of
which may change at each time potnthus the iterations of convergence toward the probabilitymay differ from one
the model do not represent simple compositions of a fnap case to another. But it is observed that if the number of nodes
with itself. X to be updated at timesis large(that is a significant num-
Simulations of iterations of the system and the modelber of nodes is updated at most time pojintise convergence
show that the model is in general a good approximation fois faster.
the Boolean system with a possible transitional phase as in To complete these observations, we note that the iteration
the case of the cyclic scheme. We provide in Figs. 13 and 14raphs can have various shapes for various distributions, es-
some simulations in which the valueg are generated ac- pecially during the transition phase.
cording to the discrete uniform distribution ¢h,2,3....,N} Since the model is a good match for the system, we can
with N=256,k=128(Fig. 13, and the binomial distribution use it to understand the behavior of the system under various
with number of trialsN=128, probability of a success 0.9, scenarios. To do this we present again a study of the sensi-
andk=64 (Fig. 14). Other distributions have also been stud- tivity of the orbits to initial values, bifurcation diagrams, and
ied such as negative binomial, Poisson, power law orfixed point analysis.
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FIG. 16. (Color online Bifurcation diagram for the GARBN
model wherex; is from a uniform distribution oq1,2,...,N}, N
=512. We observe that after R(terations the diagram suggests a
chaotic behavior, but in the long run it settles in an ordered

o . o behavior.
The study of the sensitivity of the orbits to initial values

shows that. for t.he cases whepis obtamed_ fro.m the Pols- relatively close to 1, the bifurcation diagrams suggest a cha-
son, negative binomial, or power law distributions, the eITOI i behavior for larger values & as in Fig. 17. We note
converges to zero rather fast. It is observed that as the NUMhat the graphs are similar for a much larger number of itera-
ber of nodesN increases the rate of convergence decrease%bns

?;tg a; t?gncg?”lgﬁigfiﬁgrrggiigcr;%seﬁ] :lj)if[i\?erlxiﬁil’s trr]r?ake For the Poisson, negative binomial, and power law distri-

. 9 o y . %utions, the bifurcation diagrams are similar to the one in
sense since the more nodes are in the network the more '[IrTIL_EI 3 for the ARBN. with the observations that the ordered
seems to be r_1eeded to reach a steady state. At the same t'rBehavior could be reached sooner or later, depending on the
for a fixedN, if the nodes have more parents, then the node

interaction is more elaborate and speeds up the process 8?rameters.
) . Observe that the fixed points of the map
reaching a steady behavior.
The case ofx;, from a discrete uniform distribution on X
{1,2,...,N} shows that if the number of nod&kis relatively f(p)=p+ Nt[l -p-pt-(1-pY
small, the error converges to zero fast. Winis large, the
error converges to zero faster for smaller values,dfut in - 516 the same as in the case of the cyclic scheme since the

most cases, depgnding on initial. conditions, does settle On|§éctorxt does not change the equation which gives the fixed
after many iterations, as shown in Fig. 15.

Finally, in casex; is from a binomial distribution, for '
small probabilities of success, the error converges to zero.
Otherwise, the simulations performed show that the error
may or may not converge to zero. Even for a relatively small §°'6'-
number of nodes with small or large number of parents, or °*

FIG. 15. (Color online Error plot for the GARBN model in the
case wherx; is a discrete uniform distribution oft,2,...,N}, N
=4096,k=2048. The error settles to zero after many iterations.

for large number of nodes with small number of parents, the °2 ‘ 02
+  N/2 iterations
error may not converge to zero. o s — 150 o s e 250
We make the observation that the study of the error is k k

related to the analysis of the robustness of the system, indi- 4
cating how sensitive the system is to perturbations. The error g}
plot in this paper is an analog of the Hamming distance .t
analysis of other authofgl2]. The Hamming distance gives & e
the proportion of nodes that are different in two states of the

S | o

0.2 0.2 - 10N iterati
netWOfk. . . . . ‘ - 2N iterations R . N=128e i o"sl
The bifurcation diagrams support the behavior observed % 50 100 150 % 50 100 150

so far. For the uniform distribution the bifurcation diagram ) ,

suggests that the system may reach a more ordered behaviorgig, 17. (Color online Bifurcation diagram for the GARBN
after many iterations as shown in Fig. 16, wh&re512. model wherex; is from a binomial distribution wittN=128 trials

We note that the bifurcation diagram in Fig. 16 is typical and probability of a success 0.9. For certain values of the parameter
also for the case of a binomial distribution with a probability k the system can exhibit order; for other values it can exhibit chaos.
of success small or medium. For probability of a succesghe mean value, 115.2, is large.
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FIG. 18. (Color onling Plot of the iterations 1-30, 2500-2530,  FIG. 19. (Color onling Plot of the iterations 1-30, 2500-2530,
and 5000-5030 of the mafip)=p+(x/N)[1-p-p**=(1-p)**1]  and 5000-5030 of the mafip)=p+(x/N)[1-p-p<i-(1-p)1]
in the caseN=1024,k=16. Herex; are values of a binomial distri- in the caseN=1024,k=64. Herex, are values of a binomial distri-
bution with number of trial8\=1024 and probability of success in bution with number of trial$N=1024 and probability of success in
a trial 6=0.9. a trial 6=0.9.

points, therefore Fig. 4 is valid also in this case. Observe that the complex behavior exhibited by the itera-
In conclusion, when random parameters dictate the evations of the model, such as in the case of the binomial dis-
lution of the system, its behavior can be quite diverse, rangtribution with probability of success 0.9 corresponds mainly
ing from order to chaos. to large values of;. In terms of the network, this means that
Now we look more closely at the map a large number of nodes are updated at each time point. The
larger the number of nodes updated, the more complex the
X behavior and the slower a potential steady state is reached.
fp)=p+[1-p-p*t=(1-p*7] .
P =pr A =P=P p Observe that a large number of nodes updated at each time
point brings the system closer to a synchronous random

in which x; is the value of a random variab¥etaking values Boolean network which can exhibit chaid]. In fact, if one
t g allows a— 1 in Eq.(2) the resulting function represents ex-

in{1,2,...,N}. The shape_of this map 1S dependent on theactly the corresponding one obtained &1] for synchronous

Metworks. This emphasizes previous results showing that

g]b?e'?rggg?;;f trr:!l‘so:]:napcgslnng (t)hes forlll_(ch\)/\::ir"l]g F';?)nSdS%T \[’)E.i:]'c')gsynchrony could simplify the behavior of the system in
'es. discrete, uniorm, inuous uni » POISSON, DINO% e cases, while synchrony can generate a more sophisti-
mial, negative binomial, power law, exponential, chi-square

nd normal. As observed. we have extended our study fr cated behavio[25]. At the same time it becomes clear that
a ormal. AS observed, we nave extended our stuay oL, 45 ness or noise in the system can generate various types
just discrete random variables to both discrete and contin

u- K .. .
) . . of dynamics, emphasizing previous remafR6].
ous, thus aIIo_wmg also fractional values tqr for a more n- The above discussion with distributions generalizes the
depth analysis. In each case, the parameters of the d'smbgbserved behavior of the map
tions are selected so that the probability of generating values
outside the intervall,N] is practically zero. f(p)=p+a[l-p-pt-(1-p)*]

It is observed that in many cases the behavior is not ver L
y aumed in Sec. lll, because the constan0< o<1, can be

Interpreted as the mean value of the distribution divided
by N.

complex, and there is a sometimes slow, but clear tenden
to a steady state. In the cases of the following distributions
uniform, Poisson, binomial with small probability of success,
negative binomial, power law, exponential, chi-square with
small number of degrees of freedom, and normal with small
mean, the iteration graphs are approximately similar to those
in Fig. 6, with the observation that sometimes the iterations In this paper we consider a Boolean network with
may exhibit some degree of complexity which vanishes aftenodes, each node havikgparents. We use a unique Boolean

a short while. However, in the other cases, namely the chirule for all the nodes, which generalizes rule 126 of cellular
square with larger number of degrees of freedom, binomiadutomata. We study the behavior of the system in the case of
with large probability of success, or normal with large meanasynchronous random Boolean netwo(RRBNs) and gen-
distributions, the iterations suggest either “distributional pe-eralized asynchronous random Boolean netw¢&ARBNS)
riodicity” (Fig. 18 or "distributional chaos’(Fig. 19. Fig-  providing a model for the probability of a node being in state
ures 18 and 19 are from a binomial distribution, but the otheil. We use the model to describe the system behavior through
two cases mentioned previously produce graphs similar terror plots, bifurcation diagrams, and fixed point analysis.
those in Fig. 18. The behavior is similar even after a muchVe show that the ARBN scheme generates an ordered be-
larger number of iterations of the model. havior, while the GARBN scheme generates mainly order

V. CONCLUSIONS
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but possibly chaos depending on the distributions used torder to cha®) for GARBN's due to the usage of the so-
generate the number of nodes to be updated at each tinealled annealed approximation method. On the other hand,
point, as well as the parameters of these distributions. the author 0f42] questions their findings due to a different
One possibility for future work consists on enlarging theapproach using the normalized Hamming distance which
class of random number generators for the number of nodesuggests a phase transition foxk<3 regardless of the
to be updated at each time point. Considering various stodpdating scheme. Considering a more in-depth analysis of
chastic processes as potential random number generatdiee Hamming distance of states obtained by small perturba-
would be of interest, including some processes such as Mations, to identify regions where the critical values may lay, is
kov processes, Poisson processes, Brownian motion or fraedso a subject for future work.
tional Brownian motion. The study of ARBNs and its variants is in its early stages.
Further directions of investigation will include a generali- However, it has already been observed that many processes
zation of the work in this paper to the case of a nonconstann natural or artificial networks, could be both asynchronous
number of parents studied by the authord32] under the and ordered26]. Asynchrony can happen at a local level,
assumption of a synchronous network. Various distributiondut the global system exhibits modularity. The authors of
of the number of parents could be considered, includind26] propose the spotlight model in which the Boolean net-
power-law rules. work is divided into modules, each module being associated
It would be interesting to analyze the given Boolean sys+o a regulator node which controls the updates of the module,
tem and its behavior using asynchronous updating by findinglepending on its own state. The amount of asynchronicity is
potential critical values for the number of parekisthat is  obtained by altering the number of modules used. Applying
values ofk for which the system is at “the edge betweenthe spotlight model to the work described in this paper could
order and chaos.” It has been shoy8] that for general generate some interesting results.
synchronous Boolean networks the critical valuekis2, Last, but not least, considering various Boolean rules for
while for a certain class of asynchronous Boolean networkshe nodes is of interest, since nodes of real systems usually
such critical values do not exi29]. It is important to un- do not behave according to a fixed rule. In this respect, the
derstand how a certain approach toward identification of th@uthors intend to extend the present work in the direction of
dynamics of the system influence the final result. For ex<cellular automata rule 2p19,32, as well as other legalistic
ample in[29] the authors do not find a phase transitiiom  and totalistic rules.
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